skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McCormack, Andrew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A separable covariance model can describe the among-row and among-column correlations of a random matrix and permits likelihood-based inference with a very small sample size. However, if the assumption of separability is not met, data analysis with a separable model may misrepresent important dependence patterns in the data. As a compromise between separable and unstructured covariance estimation, we decompose a covariance matrix into a separable component and a complementary ‘core’ covariance matrix. This decomposition defines a new covariance matrix decomposition that makes use of the parsimony and interpretability of a separable covariance model, yet fully describes covariance matrices that are non-separable. This decomposition motivates a new type of shrinkage estimator, obtained by appropriately shrinking the core of the sample covariance matrix, that adapts to the degree of separability of the population covariance matrix. 
    more » « less